NEW EQUILIBRIA IN ALLYL(CHLORO)PLATINUM(II) COMPLEXES

Gohei YOSHIDA, Shigeaki NUMATA, and Hideo KUROSAWA*

Department of Petroleum Chemistry, Osaka University, Suita, Osaka 565

The complexes, $Pt(ally1)ClL_2$ (ally1= $CH_2CH=CH$, $CH_2CH=CHMe$, $CH_2CM=CH_2$; $L= PPh_3$, AsPh₃), show varying degrees of equilibrium processes, depending on the nature of the ally1 moieties, L, and solvents. A convenient method to synthesize complexes of the type, $Pt(\pi-ally1)ClL_i$ is also described.

In contrast to the studies of the "dynamic" character of allylpalladium(II) complexes, 1) those of platinum(II) analogs are relatively few except for $Pt(C_3H_5)Cl(PPh_3)_2$ 1^2) where a σ -allyl intermediate has been postulated to explain its 1H NMR spectra in CDCl $_3$. We have studied more general structural aspects of $Pt(allyl)ClL_2$ with different allyl groups and L, and found evidence for the occurrence of σ -allyl structures for some of these complexes. During these studies, a convenient method to synthesize the complexes of the type, $Pt(\pi$ -allyl)ClL, has also been developed.

The reaction of Pt(PPh $_3$) $_4$ with CH $_2$ =CR 1 CHR 2 C1 in benzene readily affords Pt(CH $_2$ CR 1 =CHR 2)C1(PPh $_3$) $_2$ ($\underline{1}$ R 1 = R 2 = H; $\underline{2}$ R 1 = H, R 2 = Me; $\underline{3}$ R 1 = Me, R 2 = H). We propose that $\underline{1}$ - $\underline{3}$ exist in the forms of \underline{A} , \underline{B} , and \underline{c} in eq. 1, the relative stabilities of these forms depending on R^1 , R^2 , and solvents. The form \underline{A} has been reported to predominate for $\underline{1}$ in chloroform or nitromethane, $\underline{2}$ and this may also be the case for $\underline{2}$ and $\underline{3}$ as deduced from their ¹H NMR spectra in CDCl₃ at -50° which are very similar to those $^{3)}$ of $[Pt(\pi-ally1)(PPh_3)_2]C10_4$. Furthermore, the IR spectra of 1-3 in chloroform exhibited a very strong band at 545 cm^{-1} in agreement with two mutually cis PPh₃ ligands. 4) On the other hand, the form \underline{B} is assumed to be a preferred structure for $\underline{2}$ in the solid state⁵⁾ and in benzene⁶⁾ for the following reasons. As shown in the Table, the IR and Raman spectra of 2 in the solid state showed v(C=C) and $\gamma(=CH-)$ bands which are indicative of the presence of the free C=C bond. Furthermore, no strong IR bands appear in the region of 550 ± 5 cm⁻¹, suggesting a trans configuration. Quite similar spectral aspects were observed in benzene except that an additional very weak band appeared at 538 cm⁻¹. Probably then, the ¹H NMR spectrum of 2 in benzene (Table) is reasonably explained in terms of the predominant form \underline{B} which lies in a rapid equilibrium with a very small concentration⁷⁾ of $Pt(\pi-C_4H_7)C1(PPh_3)$ $\underline{2}-\underline{C}$, since the IR spectrum of this complex showed a very strong band at 538 cm⁻¹. It is particularly noteworthy that the value of $J(Pt-CH_2)$ in 2-B is very close to $J(Pt-CH_3)$ (79.4 Hz) in <u>trans-PtMeCl(PPh₃)</u>. As expected from eq. 1, addition of a small amount of PPh, to the benzene solution of 2-C caused the signals at δ 2.07 and 2.61 to coalesce.

$$\begin{bmatrix}
Ph_3P & Pt & R^1 \\
Ph_3P & Pt & R^2
\end{bmatrix}
C1 \longrightarrow C1 - Pt & R^2 & Ph_3P & Pt & R^2 & Ph_3P & Pt & R^2$$

$$\underline{A} \qquad \underline{B} \qquad \underline{C}$$

$$\underline{A} \qquad \underline{B} \qquad \underline{C}$$

	ν (C=C) γ (=CH-) ν (Pt-C1)			Chemical Shifts (δ)				
				Me	CH ₂		MeC <u>H</u> =	сн ₂ с <u>н</u> =
2	1640 ^{c)}	965	264	1.53(d)	2.19(d)		4.25(br)	5.2(br)
				J _H = 7	J _H = 7.5			
					J _{Pt} = 85			
<u>2-C</u>			275	1.91(t)	2.07(dd)	2.61(dd)	3.73(m)	4.69(m)
				J _H = 6	J _H = 11	J _H = 7	J _H = 6	
				J _P = 6	J _P = 3	J _P = 3	J _H '= 12	
					J _{Pt} = 80	J _{Pt} = 22	J _P = 8	

Table. IR^{a)} and ¹H NMR^{b)} Data for Crotylplatinum(II) Complexes.

The occurrence of the equilibria in eq. 1 is also supported by some chemical properties of $\underline{1-3}$. Thus, treatment of these with NaClO $_4$ to give $[Pt(\pi-allyl)(PPh_3)_2]ClO_4$ has already been known,9) and we have further found that the reaction of $\underline{1-3}$ with an equivalent amount of $\underline{H_2O_2}$ in acetone readily affords $Pt(\pi-allyl)Cl(PPh_3)$, $\underline{1-C-3-C}$, in good yields, the rest of PPh $_3$ being converted to $Ph_3P=0$. This method, although limited to the complexes with PPh $_3$, is more effective and convenient in obtaining $Pt(\pi-allyl)Cl(PPh_3)$ than that reported,10) where $\underline{1-C}$ and $\underline{3-C}$ were synthesized through $[Pt(CH_2CR=CH_2)Cl]_n$ (R= H, Me) only in low yield. Moreover, $[Pt(CH_2CH=CHMe)Cl]_n$ has not yet been prepared.

The reaction of Pt(AsPh $_3$) $_4$ with allylic chlorides in benzene gave Pt(π -allyl)Cl(AsPh $_3$) (allyl=CH $_2$ CMe=CH $_2$, CH $_2$ CH=CHMe) in one step. This result suggests that the equilibrium between Pt(allyl)Cl(AsPh $_3$) $_2$ and Pt(π -allyl)Cl(AsPh $_3$) plus AsPh $_3$ lies far to the latter.

Thanks are due to Professor K. Kawai of Toyama University for obtaining the Raman spectra. REFERENCES and NOTES

- 1. K. Vrieze, "Dynamic Nuclear Magnetic Resonance Spectroscopy", ed. L. M. Jackman and F. A. Cotton, Academic Press, New York, 1975, p. 441.
- 2. K. Vrieze and H. C. Volger, J. Organometal. Chem., 9, 537 (1967).
- 3. H. C. Clark and H. Kurosawa, Inorg. Chem., 12, 357 (1973).
- 4. S. H. Mastin, Inorg. Chem., 13, 1003 (1974).
- 5. One crystalline modification of $\underline{2}$ obtained by recrystallization from benzene/n-hexane. Repeated crystallizations from CH₂Cl₂/Et₂O increased the amounts of the other crystalline form due to $\underline{2}$ - \underline{A} whose IR spectrum showed no bands of ν (C=C), γ (=CH-), and ν (Pt-Cl) but a strong band at 545 cm⁻¹. Similarly, $\underline{1}$ gave two crystalline modifications corresponding to 1-A and 1-B.
- 6. 1 and 3 are almost insoluble in benzene.
- 7. Molecular weight of $\underline{2}$ in benzene at 45 was 700 at concentration, 0.76 wt % (Calcd. 810).
- 8. C. D. Cook and K. Y. Wan, J. Amer. Chem. Soc., 92, 2595 (1970).
- 9. H. Kurosawa, Inorg. Chem., 14, 2148 (1975).
- 10. B. E. Mann, B. L. Shaw, and G. Shaw, J. Chem. Soc. (A), 3536 (1971).

a) In Nujol mulls (in cm $^{-1}$). b) In C_6D_6 for $\underline{2}$ and $CDCl_3$ for $\underline{2}-\underline{C}$. δ in ppm, J in Hz. d= doublet, t= triplet, dd= doublet of doublets, m= multiplet, br= broad, c) By Raman spectrum.